Current Issue : July-September Volume : 2023 Issue Number : 3 Articles : 5 Articles
The mechanical transmission employed inside the computer numerical control (CNC) machine electromechanical system usually has an inherent backlash. As a position-controlled system is commonly used for the electromechanical system, the backlash limits the performance of the motion control system due to its nonlinearity and discontinuity. This paper proposes an effective method to adaptively detect and compensate for the backlash effect in real time, in which the end-effect load position of the CNC machine is estimated and controlled by the position-controlled servo system, in order to eliminate the influence of backlash on the contour path performance. The simulation results obtained from the model of a realistic CNC machine show the successful elimination of the error between the reference and the end-effector position and a significant improvement in the control system performance....
This paper aims to expose the effect of hydrogen on the combustion, performance, and emissions of a high-speed diesel engine. For this purpose, a three-dimensional dynamic simulation model was developed using a reasonable turbulence model, and a simplified reaction kinetic mechanism was chosen based on experimental data. The results show that in the hydrogen enrichment conditions, hydrogen causes complete combustion of diesel fuel and results in a 17.7% increase in work capacity. However, the increase in combustion temperature resulted in higher NOx emissions. In the hydrogen substitution condition, the combustion phases are significantly earlier with the increased hydrogen substitution ratio (), which is not conducive to power output. However, when the is 30%, the CO, soot, and THC reach near-zero emissions. The effect of the injection timing is also studied at an HSR of 90%. When delayed by 10°, IMEP improves by 3.4% compared with diesel mode and 2.4% compared with dual-fuel mode. The NOx is reduced by 53% compared with the original dual-fuel mode. This study provides theoretical guidance for the application of hydrogen in rail transportation....
Here, potential metallic bipolar plate (BP) materials were manufactured by laser coating NiCr-based alloys with different Ti additions on low carbon steel substrates. The titanium content within the coating varied between 1.5 and 12.5 wt%. Our present study focussed on electrochemically testing the laser cladded samples in a milder solution. The electrolyte used for all of the electrochemical tests consisted of a 0.1 M Na2SO4 solution (acidulated with H2SO4 at pH = 5) with the addition of 0.1 ppm F−. The corrosion resistance properties of the laser-cladded samples was evaluated using an electrochemical protocol, which consisted of the open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) measurements, and potentiodynamic polarization, followed by potentiostatic polarization under simulated proton exchange membrane fuel cell (PEMFC) anodic and cathodic environments for 6 h each. After the samples were subjected to potentiostatic polarization, the EIS measurements and potentiodynamic polarization were repeated. The microstructure and chemical composition of the laser cladded samples were investigated by scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX) analysis....
Microsecond and nanosecond lasers have been studied in the past for laser cleaning applications and, today, femtosecond lasers are also being used successfully for removing paint, rust, and surface contamination. For diamond segmented drill bits, it may be also necessary to improve the mechanical properties of the laser-welded joint, i.e., to increase the tensile strength and toughness. Therefore, in this study, we investigated the possibility of using femtosecond lasers to clean the surface before laser welding to see what effect it has on the mechanical properties of the joint. The end surface of the thin-walled tube was pretreated to remove grease and oil before laser-beam welding a powder metallurgical segment onto it and the results are compared to an untreated sample. The laser-welded seams were investigated by micro-computer tomography, break-out test, and optical microscopy. Any defects in the seams were analyzed and, according to the results obtained in this study, no cracks were found by computer tomography, a shade of grey diagram shows, and all the pre-treated samples had a higher absorption than the untreated sample. Four of the six treating parameters had a significant effect, +30% on average, and two treating parameters had a positive effect, +13.5% on average, compared to the untreated sample. In addition, the break-out values showed that only one treating parameter had a significantly, +19%, higher effect than the other treating parameters. This test showed different results from the micro-CT scan. The optimal process parameters for oil and grease removal are discussed in the conclusion....
Ultrasonic welding (UW) is a well-established technique for joining thermoplastic composites and has recently been utilized in the aerospace and automotive industries. In the case of thermoset composites (TSCs), a polymer-based material placed at the welding interface called an energy director (ED) is required. The choice of the coupling layer material is linked to several requirements, such as processing temperature, high adhesion to the thermoset composites (TSCs) adherend and mechanical strength of the resulting welded joints. In this work, the authors investigated the possibility of using Poly-vinyl-butyral (PVB) reinforced with graphite nanoplatelets (GNPs) as a coupling layer in the UW of TSC adherents. The effect of GNPs aspect ratio and content on the weldability of carbon fiber-reinforced plastics (CFRP) has been investigated. PVB/GNPs nanocomposites with different filler contents (from 0.5 wt% to 2 wt%) and different aspect ratios (100 and 2100) have been fabricated. The influence of the viscoelastic properties of the flat EDs on weldability has been assessed. Finally, an improvement of lap shear strength (LSS) of 80% was found for nanocomposites with 0.5 wt% of high-aspect-ratio GNPs with respect to neat PVB. The use of high damping nanocomposites as coupling materials for TSCs paves the way for a new generation of EDs in UW....
Loading....